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Purpose. Pregabalin is being evaluated for the treatment of neuro-
pathic pain. Two phase 2 studies were simulated to determine how
precisely the dose that caused a one-point reduction in the pain score
could be estimated. The likelihood of demonstrating at least a one-
point change for each available dose strength was also calculated.
Methods. A pharmacokinetic-pharmacodynamic (PK/PD) model re-
lating pain relief to gabapentin plasma concentrations was derived
from a phase 3 study. The PK component of the model was modified
to reflect pregabalin PK. The PD component was modified by scaling
the gabapentin concentration–effect relationship to reflect pregabalin
potency, which was based on preclincal data. Uncertainty about the
potency difference and the steepness of the concentration–response
slope necessitated simulating a distribution of outcomes for a series of
PK/PD models.
Results. Analysis of the simulated data suggested that after account-
ing for the uncertainty, there was an 80% chance that the dose de-
fining the clinical feature was within 45% of the true value. The
likelihood of estimating a dose that was within an acceptable pre-
defined precision range relative to a known value approximated 60%.
The minimum dose that should be studied to have a reasonable
chance of estimating the dose that caused a one-point change was
300 mg.
Conclusions. Doses that identify predefined response may be impre-
cisely estimated, suggesting that replication of a similar outcome may
be elusive in a confirmatory study. Quantification of this precision
provides a rationale for phase 2 trial design and dose selection for
confirmatory studies.

KEY WORDS: clinical trial simulation; pharmacokinetic/
pharmacodynamic model; dose estimation.

INTRODUCTION

Dose selection for phase 2 and phase 3 studies is a chal-
lenging issue in drug development. The phase 2 goal is to
learn if a drug is safe and effective and how these endpoints
vary with dose so that the performance of optimal doses can
be confirmed in phase 3 studies. Often the highest dose stud-
ied in phase 2 is set by a maximally tolerated dose based on
safety and tolerance results from phase 1. On the other hand,
the criteria for setting the lowest and intermediate doses are

often not explicitly defined. For the lowest dose, the target is
often to use a dose below which the drug is unlikely to pro-
duce a clinically useful effect (no-effect dose) and the inter-
mediate dose(s) to lie somewhere between the lowest and
highest doses. However, such a strategy may not result in an
optimally designed study to select doses for phase 3 trials and
be predisposed toward a high risk of having to conduct mul-
tiple phase 2 studies in the event that the outcomes are am-
biguous. For example, two different doses may be studied but
not show a difference in effect. So does this imply that there
truly was no difference in effect or that the study design was
not sensitive enough to demonstrate a difference? Such am-
biguity about the dose-response requires resolution before
more expensive phase 3 trials are done to avoid the risk of
studying a less than optimum dose, and this contributes to
increased development costs and extended development
time. On other occasions doses may be selected for a phase 3
study based on an apparent dose–response relationship de-
rived from phase 2, which when studied in a confirmatory
study demonstrates an effect of lesser magnitude. This may
result in additional clinical studies to resolve the paradox,
thereby delaying registration and escalating development
costs. Development costs for a new chemical entity have re-
cently been cited as being around US$800 million, with much
of the cost attributable to rising clinical trial costs (1). Further
failure to fully elucidate dose-response likely contributed to
systematic overdoses of a number of marketed compounds,
resulting in unnecessary harm to patients and subsequent la-
beling changes (2,3).

These pitfalls might be avoided if, at the time of phase 2
planning, there is a clear understanding of the desired clinical
response(s) and how precisely the dose producing this re-
sponse can be estimated from a trial design under different
assumptions of drug pharmacokinetics (PK) and pharmaco-
dynamics (PD). For example, if the desired clinical response
was half of the maximum obtainable response possible, and it
was shown that the corresponding dose (i.e., the ED50) could
not be estimated with any real precision, there would be less
inclination to base dose selection for a confirmatory study on
the results of such a phase 2 study. The likely consequence
would be a modification of the study design, enabling the
ED50 to be estimated more precisely. If on the other hand the
ED50 was shown to be estimated with acceptable precision,
then this would suggest that the design was well suited to
elucidate dose-response and would substantiate dose selec-
tion for phase 3 based on the phase 2 study outcome.

A variation to this concept of evaluating a trial design by
quantifying the precision of dose selection is the estimation of
the likelihood that a trial design can correctly identify the
dose that causes the response of interest. When planning
clinical studies, some measure of how often a given design
would correctly determine the “right” dose would be useful
for guiding the design and building confidence in the study
outcome. In this case, determination of the “right” dose ne-
cessitates calculating the probability that the dose falls within
a prespecified range that corresponds to acceptable precision
about a known or true value. Reverting back to the ED50

example, if there is a high likelihood (e.g., 80%) that the ED50

falls within a desired precision (e.g., 35% of the true value),
then this suggests the study design is suitable to estimate the
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dose producing the response of interest. In this context, the
study could be described as adequately powered, and there-
fore, planning future studies on the outcome of the actual
study would be reasonable. If this probability were lower, e.g.,
40%, it would suggest the study was not well powered and
that additional work or changes to the study design were
necessary to increase the chances of characterizing the dose
corresponding to the response of interest, so that confirma-
tion would be optimized in future phase 3 studies.

Quantification of the precision for estimating a dose that
causes a desired clinical effect and estimation of the likeli-
hood that a dose falls within a prespecified precision range
(i.e., determining the likelihood that a design will correctly
estimate the right dose) are measures of trial performance
and provide a means of comparing the efficiency of different
study designs to satisfy the objectives. These analyses can be
accomplished before commencement of the phase 2 study
paradigm through the implementation of a clinical trial simu-
lation (CTS) strategy that takes into account the variability
associated with patient population kinetics, dynamics, and
compliance. When a particular design is simulated on mul-
tiple occasions, a probability distribution of trial outcomes is
generated, and the subsequent evaluation of these distribu-
tions can then provide some insight into the trial performance
and thus offer a rational basis for making decisions about
different aspects of a clinical study design given the different
realms of uncertainty (4,5). Without the aid of a simulation
strategy to evaluate the impact of uncertainty in key assump-
tions or to determine the elements of trial designs that are
critical to a successful outcome, scientifically and commer-
cially efficient drug development programs will continue to be
elusive.

In this paper, a clinical trial simulation study is presented
that evaluated how well two 8-week parallel group phase 2
studies could identify doses that corresponded to a response
of clinical interest for pregabalin [CI-1008, (S)-3-isobutyl
GABA, (S)-(+)-3-(aminomethyl)-5-methylhexanoic acid], a
new drug under development for multiple indications, which
include pain relief in diabetic neuropathic patients. Diabetic
neuropathy is defined as peripheral somatic or autonomic
nerve damage attributable solely to diabetes mellitus, and the
symptoms of the disease may include severe painful and per-
sistent burning, thermal hyperalgesia, prickling sensations, in-
somnia, weight loss, anxiety, and depression. The response of
interest was a one-point reduction in pain intensity on an
11-point numerical pain rating scale. The dose that produced
this effect was defined as the minimum effective dose (MED),
as this change was considered the minimum clinically signifi-
cant change (6).

There was a body of preclinical information about the
potency of pregabalin compared to gabapentin, another drug
shown to be clinically effective in diabetic neuropathy, which
enabled a conservative, best, and optimistic guess at the clini-
cal effectiveness of pregabalin. The information was linked
through a series of mathematical models, and the potential
inaccuracies of the model predictions resulting from the un-
certainty of the “true” model parameter values were incor-
porated into the decision framework for evaluating the trial
performance. As the simulation study was completed after
protocol finalization, the outcome of the simulation study
failed to impact the development program.

The objective of this simulation study was to quantify

how precisely the MED could be estimated from the pro-
posed phase 2 plan and the likelihood that the MED was
correctly identified from the plan (i.e., how often the esti-
mated MED was within a prespecified range of a known true
value).

METHODS

Derivation of the Simulation Models

The models used in the simulation study were based on a
precursor pharmacokinetic/pharmacodynamic (PK/PD)
model for gabapentin. The gabapentin PK/PD model was de-
rived from a placebo-controlled phase 3 study of gabapentin
efficacy in neuropathic pain (7) and incorporated components
that described the drug PK and PD, a placebo effect, and
subject dropout rate. There were insufficient data to precisely
estimate the slope of the concentration–response relation-
ship, and this led to the derivation of three different precursor
models. The models reflected a conservative, a most likely
(best guess), and an optimistic description of the concentra-
tion–response data. The final set of simulation models was
obtained by modifying the precursor models to reflect the
pregabalin drug effect. Replacing the gabapentin PK compo-
nent with a PK model of pregabalin and scaling the potency
parameter (EC50) according to the relative difference in po-
tency between the two compounds accomplished this. The
scaling of the potency was based on preclinical models of the
drug’s effects.

Precursor PKPD Models Based on Gabapentin

PK Model

Average gabapentin plasma concentrations were esti-
mated for each subject using a single-compartment model
with zero-order input [Eq. (1)] and individual measures of
weight and creatinine clearance, collected at the outset and
during the course of the study. Pharmacokinetic studies in
humans have shown that the apparent volume of distribution
is proportional to weight (9) and that gabapentin, which is
cleared only by renal excretion (8,9), is dependent on renal
function. Gabapentin renal clearance was shown to be lin-
early related to creatinine clearance in a single-dose PK study
in 60 subjects with various degrees of renal failure (10).
Therefore, renal clearance was derived from creatinine clear-
ance (ClCr) based on individual serum creatinine measure-
ments and application of the Cockcroft and Gault equation
(11) and was subsequently used in the estimation of average
gabapentin plasma levels. Previous studies also demonstrated
that plasma gabapentin concentrations increased in a less
than proportionate manner with increasing oral doses, and
this resulted in bioavailability estimates ranging from 60% to
30% over a dose range of 300 to 1200 mg t.i.d. (9,12). There-
fore, the relationship between amount of gabapentin admin-
istered and that reaching the systemic circulation was de-
scribed by Eq. (4).

Cavg = �Doseapp����Cl�1 − e
−�Cl

V � �t
� (1)

Where

Cl = �ClCr � 1.06 + 0.84� (2)
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V = 0.8 � wt (3)

Doseapp = 823 � Dose��Dose + 1120� (4)

In Eqs. (1)–(4), Cavg � average plasma concentration
between peak and trough levels (�g/ml), CL � oral clearance
(L/day), ClCr � creatinine clearance (L/day), Dapp � appar-
ent dose (mg), V � volume of distrubution (L), wt � weight
(kg), � � dosing interval (h), t � time (day). [Equations (2)
and (3) are from references 9 and 10.]

PD Model

The gabapentin PD model was derived from a double-
blind placebo-controlled trial of gabapentin for the treatment
of painful diabetic peripheral neuropathy (7). Following a
1-week screening phase, patients were randomized to receive
gabapentin or placebo according to an 8-week, double-blind,
parallel-group, multicenter study design. Gabapentin (or
matching placebo) was titrated from 900 to 3600 mg/day di-
vided into three daily doses (t.i.d.) during the first 4 weeks of
the double-blind phase. In the second 4 weeks, dosage was
maintained at the maximum dose that was tolerated by each
patient. A total of 165 patients were randomized to treatment:
84 received gabapentin, and 81 received placebo. The primary
efficacy measure was daily pain severity as measured on an
11-point Likert scale (0 � no pain; 10 � worst possible pain).
A random-effects model was used to characterize the rela-
tionship between daily pain score and gabapentin exposure in
individual patients taking into account placebo, time, and
baseline effects. The modeling of the clinical trial data sug-
gested a drug and placebo effect [Eq. (5)] that were depen-
dent on the baseline pain response. Drug effect was also de-
pendent on average drug concentration, and this relationship
was described by a sigmoid Emax function (13). Random ef-
fects were associated with the placebo onset rate constant
(kpl), the baseline score (Base), and a scaling factor describing
the magnitude of the placebo effect (PLM) using a propor-
tional error model. Random effects were assumed to follow a
multivariate normal distribution with mean 0 and diagonal
variance-covariance matrix �, with diagonal elements
(�1

2…�m
2) (15). An additive residual error component was

included in the model.

E = Base�1 + �PLM� � �1 − e−kpl�t� +
Emax � Cavg

n

Cavg
n + EC50

n � + � (5)

where E � pain score (0-10), Base � pretreatment baseline
score (0-10), PLM � the magnitude of the placebo effect,
kpl� the first order rate constants describing the onset of the
placebo effect (days−1), t � time (days), Emax � the maximal
drug effect, EC50 � the concentration at which the effect due
to drug is 50% of Emax (�g/ml), Cavg � the average gaba-
pentin concentration based on dose, and estimated clearance
(�g/ml), n � Hill Coefficient or slope of dose–response re-
lationship, and � � the within-subject random effect. Be-
tween-subject random effects were associated with Base,
PLM, and kpl.

The models were fitted to the data with the nonlinear
regression program NONMEM (version V) using the first-
order method (14). Initial fitting of the data with uncon-
strained parameters resulted in a maximal drug effect (Emax)
that approximated a 20% reduction in pain score and a slope

parameter equal to 10 that suggested a near-vertical concen-
tration–response slope (Model 1). Constraining the slope pa-
rameter to reflect a nonlinear monotonically increasing con-
centration–response profile with an asymptote (slope param-
eter � 1) yielded a maximal drug effect that approximated a
50% reduction in pain score (Model 2). The objective func-
tion value (OFV) for both of these models was equivalent
(OFV�13018), which suggested that the models character-
ized the gabapentin neuropathy trial data equally well. Diag-
nostic plots indicated that the average response in the pla-
cebo-treatment group was well characterized but was under-
predicted in the treatment group with Model 1 and
overpredicted with Model 2. Therefore, an additional set of
parameters characterizing the drug effect (Model 3) was de-
rived through a series of manual iterations by assigning values
of Emax, EC50, and the slope to reflect a concentration–
response profile intermediate to those obtained from Models
1 and 2, and to more accurately describe the average pain
score over time for the subjects who received gabapentin (Fig.
1, right panel). The final values for Model 3 were Emax �
−0.25, EC50 � 5.35 �g/ml, and n � 2. Model 1 was considered
the most conservative PKPD model, Model 2 the most opti-
mistic, and Model 3 the most likely or best guess. The rela-
tionship between the drug effect characterization and the con-
centration range over which the response was evaluated is
displayed in Fig. 2. There was a paucity of data outside of this
concentration range that would explain why the data were
equally well described by Models 1 and 2. Figure 1 compares
the average response over time for the placebo and drug-
treated groups with the model predictions.

Dropout Model

A dropout model describing a 3% weekly (0.43% day)
dropout rate was derived based on a review of dropout data
from the gabapentin study. Dropout rates were approxi-
mately the same in both groups. This was implemented in the
simulation model as a survival model according to the follow-
ing equation:

S�t� = exp�− �0

t
h�x�dt� (6)

where

�0

t
h�x�dt = 0.0043 (7)

For each patient, a uniform (0,1) random variate was
generated for each study day, and the patient was dropped
from the study on the first day that a random variable less
than 0.0043 was obtained.

Final Models

The precursor PK/PD models were modified to reflect
pregabalin PK and the likely PD. Mean and variance esti-
mates of pregabalin clearance and volume were obtained
from an oral rising single dose tolerance and pharmacokinetic
study in healthy volunteers (15) and replaced those of gaba-
pentin. Individual plasma concentrations were simulated us-
ing a one-compartment model and measures of pregabalin
clearance and volume of distribution that were derived by
random sampling with replacement from log normal distribu-
tions with a mean (standard deviation) of 4.4 (0.14) L/h and
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36.6 (0.18) L, respectively. Doseapp was set to equal the actual
dose because pregabalin is essentially completely absorbed
across the entire dose range. The gabapentin potency param-
eter (EC50) was multiplied by a constant based on the
pregabalin/gabapentin potency ratios derived from preclinical
models of pain relief in inflammatory (formalin footpad test,
carageenan-induced thermal and mechanical hyperalgesia
model), surgical (plantaris muscle incision model), or neuro-
pathic pain (streptozocin model of neuropathic pain) (16–21).
Preclinical pain relief models indicated that the maximum
drug effect of pregabalin was the same as that of gabapentin,
and the average potency difference based on the EC50s was
approximately 3, but estimates from different models ranged
from 2 to 4. Thus, the gabapentin PK/PD models were scaled
based on a conservative (scaling factor � 2), most likely (scal-
ing factor � 3), and optimistic (scaling factor � 4) estimate
of the difference in potency of the two compounds.

Simulation Methods

The uncertainty in both the concentration–response
slope and potency scaling parameter resulted in the use of five
distinct models for the simulations (SM). In models SM1,
SM2, and SM3, the scaling factor was set to equal 3 (most
likely scaling factor) while the slope of the concentration–
response relationship was varied to span the range of uncer-
tainty (i.e., 1–10). In models SM4 and SM5, the concentra-
tion–response slope was assumed to equal 2 (most likely
slope), while the scaling factor was set to 2 and 4, respectively.
Overall, SM3 was considered the most likely representation
of the pregabalin PK/PD (best guess model) because the con-
centration-effect shape was intermediate to those defined by

SM1 and SM2, and the scaling factor was the average value
obtained from preclinical data. Changing parameter estimates
used in the simulation models are listed in Table I, and fixed
parameter estimates are listed in Table II.

For each of the two phase 2 study designs listed in Table
III, daily pain scores were simulated in 5000 patients for the
five pregabalin PK/PD models using the Pharsight Trial Simu-
lator, version 1 (22). The simulated outcome measure was
converted to a discrete value on a 0 to 10 scale by rounding to
the nearest integer. The primary measure of drug effective-
ness was the difference in the mean daily pain score at the last
week of treatment relative to the mean daily baseline score
(baseline-adjusted pain score). The two sets of simulated data
were pooled for each set of model assumptions, and the MED
was derived by fitting the mean baseline adjusted pain score
for each treatment group with a sigmoid Emax model (S-Plus
ver 4.0) (23) and then calculating the MED on the basis of the
Emax model parameter values. These estimates represented
the true value of the dose that corresponded with the desired
predefined clinical response in the virtual patient population.

For each study, 80 patients/dose-group were sampled
with replacement from the virtual population on 500 occa-
sions, each replicate reflecting a simulated clinical study. For
each replicate, the mean baseline adjusted pain score was
determined at each dose, and the means from both studies
were then pooled. The pooled means were fitted with a sig-
moid Emax model (S-Plus ver 4.0), and the MED was subse-
quently calculated from the model parameters. Trial perfor-
mance metrics were calculated on the basis of the distribution
of estimated MED values. To estimate the precision with
which the MED could be estimated with 80% confidence, the
10th and 90th percentile values were obtained from the dis-

Fig. 1. Average pain score observations and model predictions for the placebo and gabapentin treatment groups.
Error bars represent 1 standard deviation. Simulation was run 500 times.
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tribution for each set of model assumptions. The bias of the
outcome relative to the true value was determined from the
50th pecentile. The percentage of studies that estimated the
MED to be within 35% of the true value was also calculated,
with the rationale for the cutoff value being that there was
approximately a twofold difference between the upper and
lower limits. This difference was arbitrarily selected for the
purposes of the simulation study.

RESULTS

The true MED values for all five models and the 10th,
50th (median), and 90th percentiles of the MED distribution

are displayed in Table IV. Percentiles are expressed as a frac-
tion of the true value for the different assumptions about the
steepness of the concentration–response relationship and the
size of the scaling factor. The predicted MEDs were, on av-
erage, slightly negatively biased, with the MED being within
10% of the true value, depending on the model assumptions.
The precision of the MED relative to the true value varied
among models. Across all models (SM1–SM5), the precision
of the MED estimate was within 45% of the true value 80%
of the time.

The power to estimate the MED to be within 35% of the
true value for the different models is displayed in Table V.
The results indicate that the power increases with increasing
slope under the conditions of the most likely scaling factor
(comparing SM1, SM2, and SM3). The power to estimate the
MED assuming the most likely estimates of scaling factor and
concentration effect slope was 61% across the range of as-
sumption uncertainty.

Table I. Values of Varied Parameters for Each Simulation Model

Model
no.

Slope
factor (n)

Scaling
factor

Pregabalin
EC50 Emax

1 10 3 1.67 −0.202
2 1 3 5.33 −0.489
3 2 3 5.35 −0.25
4 2 2 8.03 −0.25
5 2 4 4.01 −0.25

Emax � the maximal drug effect.
EC50 � the concentration at which the effect of the drug is 50% of
Emax (�g/ml). The EC50 for pregabalin was derived by dividing the
gabapentin EC50 by the scaling factor.
n � Hill coefficient or slope of dose–response relationship.
Model 3 was considered the most likely model to predict the pregaba-
lin outcome.

Table II. Mean (Variance) of Fixed Parameters in Simulation Study
Models

Baseline PLM kpl �2

6.4 (0.05) −0.26 (0.12) 0.05 (1.8) 1.2

Base � pretreatment baseline score (0–10).
PLM � the magnitude of the placebo effect.
kpl � the first-order rate constants describing the onset of the pla-
cebo effect (days−1).
�2 � residual variance.

Fig. 2. Concentration–response profiles for the drug effect component of the pharmacodynamic
models used in the simulation studies. Models of drug effect (Model 1 and 2) were derived from a
clinical study of gabapentin and represented the data equally well. Model 3 was considered the most
likely representation of the drug effect. The figure displays the concentration range containing the
response data on which the drug effect models were based. The paucity of response data outside of
this region resulted in models 1 and 2 characterizing the data equally well.
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DISCUSSION

This simulation project quantified the reliability of a
phase 2 program to identify the dose that caused a predeter-
mined response. The reliability was expressed in terms of a
confidence interval for quantifying how often the character-
izing dose was estimated to be within a certain range of the
true value. The results indicated that over a range of assump-
tions in drug potency and concentration–response slope, the
dose defining the features of interest was within 45% of the
true value 80% of the time, and the likelihood of the program
to estimate the dose with acceptable precision approximated
50% and ranged from 40% to 70% depending on the key
assumptions.

This suggests that the identification of the selected dose-
response feature with any real precision from the trial design
paradigm is borderline. Therefore, if the objective was to con-
firm the outcome in a future phase 3 study, selecting a dose
based on this single outcome might be “risky.” Borderline
precision should promote consideration of the rationale un-
derlying what is acceptable and how to improve the precision
for identifying a dose that defines a feature of interest. Some
options might include changing the number of treatments, the
number of efficacy measurements, the desired clinical re-
sponse, or the acceptance limits. Further options might be the
gathering of additional information to reduce the uncertainty
associated with key assumptions that influence how reliably a
dose can be estimated. Investigating the impact of these op-
tions or combinations thereof may assist in identifying key
failure points in a development program that, if remedied,
may optimize decision making and enable the selection of
effective doses for confirmatory studies with a high level of
confidence.

The marginal precision raises the question as to what is

the best dose to study to ensure a clinical outcome of at least
a one-point change in pain score, given the dosing options
available. This question was elucidated by evaluating the
MED distribution derived from the simulations that charac-
terized the probability of detecting a one-point change over a
range of doses, with the true value having a probability of 0.5.
In this simulation study the dosing options were placebo, 75
mg, 150 mg, 300 mg, 450 mg, and 600 mg, and the percentage
of simulated studies that estimated the MED to lie within
these dose ranges are listed in Table VI. This analysis indi-
cates that there is a 70% likelihood of detecting at least a
one-point change at 300 mg, with the probability increasing to
90% at 450 mg. Thus, it would be prudent to study at least a
dose of 300 mg to confirm the drug effect of at least a one-
point improvement in pain score.

The process described addressed different aspects
needed to apply CTS to optimize clinical trial design and
development strategies. First, the concept of building a model
based on a variety of data sources was described. The model
provided the framework to incorporate knowledge from dif-
ferent sources about the drug effect, the placebo effect, pa-
tient dropout, and the variability associated with the different
model components. The dropout model was included to re-
flect the assumption that patients would drop out completely
at random, independent of the treatment, and that the drop-
out rate would be similar to what was observed in the gaba-
pentin study. If the dropout rate were greater than what was
assumed, then the precision of the MED would be overesti-
mated.

Building a family of models enabled the impact of key
assumption uncertainty to be investigated with the resultant
conclusion that neither the uncertainty in potency ratio or
dose–response slope significantly impacted the precision of

Table IV. Distribution of Minimum Effective Dose (MED) Across
the Range of Uncertainty in Concentration–Response Slope Value

and Scaling Factor

Model
Scale
factor

Slope
value

MED true
value (mg)

Percentiles of MED
distribution

10% 50% 90%

SM1 3 10 215 0.82 1.03 1.48
SM2 3 1 285 0.58 0.90 1.38
SM3* 3 2 275 0.59 0.88 1.47
Average 0.66 0.94 1.44

SM4 2 2 418 0.55 0.88 1.38
SM3* 3 2 275 0.59 0.88 1.47
SM5 4 2 202 0.59 0.92 1.49
Average 0.58 0.89 1.45

Tabular values are expressed as fraction of the true value and were
derived from analysis of two proposed phase 2 study designs, which
were simulated 500 times. Asterisk (*) represents most likely model.

Table V. Power of the Study Designs to Estimate the Minimum Ef-
fective Dose (MED) to Be Within 35% of the True Value Across the
Range of Uncertainty in the Scaling Factor and Concentration–Effect

Slope

Model

Percentage of
studies with MED

estimate less
than 35% of true

value

Percentage of
studies with MED
estimate greater

than 35% of true
value

Total percentage
of studies with
MED within
35% of true

value

SM1 8 24 68
SM2 56 1 43
SM3* 6 33 61
SM4 12 41 47
SM5 47 3 50
Average 54

Tabular values are expressed as a percentage of the total number of
MED estimates derived from the analysis of two proposed phase 2
studies, which were simulated 500 times. Asterisk (*) represents most
likely model.

Table III. Dose, Treatment Duration, and Outcome Variable of Simulated Studies

Protocol
Baseline duration

(weeks)
Titration duration

(weeks)
Stable treatment
duration (weeks)

Daily dose
(mg) Primary outcome

Study 1 1 2 4 0,150,600 Weekly mean pain score
Study 2 1 1 4 0,75,300,600 Weekly mean pain score
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the phase 2 program under consideration to estimate doses
that characterized dose-response features. Had uncertainty in
one key assumption influenced the outcome to a greater ex-
tent than the other, additional preclinical studies could have
been conducted or the data reanalyzed in an attempt to re-
duce the uncertainty associated with that particular assump-
tion. This notion reflects how CTS might, therefore, influence
preclinical development of new drugs and promote greater
liaison between preclinical and clinical development teams.
Gomeni et al. (24) provide another example of this integra-
tion of PK and PD knowledge and the use of CTS to design
and proof concept trials for the first time in humans. Also,
in retrospect the authors acknowledge that a posterior
predictive check (PPC) would have been useful before con-
ducting the simulations. The PPC quantifies how well the
model predicted the data on which it was based, thus provid-
ing some measure of the predictive power of the model. Al-
though a PPC was not conducted for this simulation study, the
author’s recommend this be conducted in future simulation
studies.

Another aspect discussed was the use of metrics to quan-
tify how well the study design could identify clinically relevant
endpoints. This simulation study assisted in the identification
of an important clinical endpoint and prompted consideration
of how precisely the dose corresponding to this clinical fea-
ture should be estimated relative to the known true value.
This defined what constituted “acceptable precision,” which
then served as a marker of trial performance; i.e., how many
of the simulated trials estimated the dose that corresponded
to the clinical feature to fall within the acceptable precision
range. Thus, defining the desired dose-response features and
acceptable precision and confidence estimates at the outset of
a clinical development program is an integral part of a clinical
trial simulation program and leads to decision making based
more on information and less on empiricism, thereby opti-
mizing the overall development program.

The simulation program provided some key findings.
Noteworthy was that CTS can be complex and time consum-
ing. Therefore, if this technology is to become effective in
drug development, model development should begin as early
as possible and best practices implemented to facilitate this.
Furthermore, this work served to educate by demonstrating
across disciplines that the power of the simulation was not just
in simulating potential outcomes but in focusing on what spe-
cifically the phase 2 program was designed to accomplish and
subsequently examining the impact of assumption uncertainty
on these objectives, thus removing some of the empiricism in
dose selection for future studies.
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